
Simulation Modelling Practice and Theory 126 (2023) 102774

A
1

R
p
Z
a

b

C

A

K
3
F
A
R
Q

1

p
a
i
m
i
m

a
b
T
s
q
e

h
R

Contents lists available at ScienceDirect

Simulation Modelling Practice and Theory

journal homepage: www.elsevier.com/locate/simpat

obust optimization for functional multiresponse in 3D printing
rocess
ebiao Feng a, Jianjun Wang b,∗, Xiaojian Zhou a, Cuihong Zhai b, Yizhong Ma b

School of Management, Nanjing University of Posts and Telecommunications, Nanjing 210003, People’s Republic of China
Department of Management Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, People’s Republic of
hina

R T I C L E I N F O

eywords:
D printing
unctional multiresponse
dditive Gaussian process model
obust optimization
uality loss

A B S T R A C T

Computer models are commonly used to simulate the functional relationships between inputs
and outputs for quality design in 3D printing. However, the high-dimensional outputs of
functional multiresponse make it challenging to develop the simulation model and perform
robust optimization. This paper proposes a novel optimization method with an additive
multiresponse Gaussian process model for dealing with functional multiresponse optimization
problems. First, an additive covariance function is constructed to capture the correlation of
the temporal inputs. Second, the Markov Chain Monte Carlo sampling technique is adopted to
determine the simulation model and quantify the uncertainty. Finally, the optimization model
is constructed by integrating the quality loss function and interval analysis method, and the
Bayesian optimization algorithm is used to obtain the optimal solution. A numerical simulation
example and a 3D printing case study are used to illustrate the effectiveness of the proposed
method. The comparison results show that the responses of the proposed method are closer to
the targets than the current ones, and all fall within the specified interval.

. Introduction

Recently, additive manufacturing or 3D printing techniques have been increasingly used in industrial production for complex
roducts or processes [1]. The additive manufacturing process obtains products by the layer fusion process with the 3D computer-
ided simulation models. It can reduce the waste of material of the traditional manufacturing technique [2]. Meanwhile, 3D printing
s easy to operate, low cost, and not limited by time and space of production, which has become a new alternative to traditional
anufacturing processes [3]. While improving the quality of 3D printing products by robust optimization techniques is a challenging

ssue, specifically for the functional multiresponse, because of the high-dimensional outputs of simulation models. Therefore, it is
eaningful to develop robust optimization techniques for functional multiresponse in 3D printing products.

The quality characteristics of 3D printing products include physical properties (e.g., tensile strength, heat resistance, and strain)
nd geometric properties (e.g., surface roughness and precision). Meanwhile, these quality characteristics are usually determined
y process parameters (input parameter settings), such as laser power, scanning speed, layer height, and nozzle temperature.
herefore, research studies on a detailed microscopic level have focused on identifying appropriate process parameters and their
ettings to address the quality characteristics in 3D printing processes [4,5]. Robust parameter design is one of the most common
uality improvement methods, mainly by selecting the input parameter settings to improve product quality [6,7]. Yadroitsev
t al. [8] pointed out the parameter that most affected the stainless steel grade 904L powders was laser kilometer, followed by
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powder layer thickness, scan speed, and particle size. Rayegani and Onwubolu [9] used the group method for data modeling and
simulation for prediction purposes. Subsequently, Mohamed et al. [10] pointed out that determining the optimal process parameters
is crucial to the mechanical properties of 3D products. They proposed a robust optimization method to select appropriate process
parameters to improve mechanical properties for 3D printing products. Popescu et al. [11] found that different settings of process
parameters impact the mechanical behavior of the products. Furthermore, Hashemi Sanatgar et al. [12] stated that the different
combinations of process parameters (e.g., platform temperature, extruder temperature, and printing speed) can significantly affect
the characterization of polymers to fabrics. Yadav et al. [13] investigated the influence of material density, infill density, and
extrusion temperature on the mechanical properties of 3D printing products. Kamaal et al. [14] found that tensile property was
significantly influenced by the infill percentage, building direction, and layer height of the fused deposition modeling. Lokesh
et al. [15] studied the effect of 3D printing parameters (build orientation, Layer thickness, and raster angle) on the mechanical
properties through the design of experiment by using the Taguchi approach. Afterward, ten Bhömer et al. [16] found that the air
intake volume and the printing speed can affect the adhesion strength of 3D printed material on the fabric. With the complexity of
product structure and appearance, robust optimization methods based on nonparametric simulation models are used to solve the
quality improvement problems of 3D printing. McConaha and Anand [17] used the neural network model to develop the robust
optimization method, compensating for the error deviation in the 3D printing process and improving the product quality. Most of the
above studies with the traditional simulation models cannot effectively deal with the robust optimization problems in 3D printing
because of the complex, nonlinear, or even functional responses.

Due to the time-consuming nature of the simulations, Gaussian process (GP) models are often used as response surfaces to
stimate the relationship between input variables and outputs. The response surface based on the GP model has the advantages of
igh prediction accuracy and time-saving, which provides great convenience for realizing robust parameter design [18–20]. Tan
nd Wu [21] proposed a quadratic expected quality loss function based on the GP model and adopted the posterior probability
nalysis method to perform robust optimization. Subsequently, Costa and Lourenço [22] constructed the optimization model with
he outputs of the GP model to evaluate the robustness of the optimal solution. Wang, Yuan, and Ng [23] considered the influence
f input noise on the optimal results and used the stochastic simulation method to improve the robustness of the optimal solution.
hen, Ouyang et al. [24] used the Monte Carlo simulation technique to obtain the optimal robust solution under data pollution.
or high-dimensional response optimization problems, Zhang et al. [25] constructed the GP model with mixed input variables,
hich improves the prediction accuracy of simulation models. Kleijnen and Mehdad [26] pointed out that the variance estimator

ignificantly underestimates the true variance, which may affect the performance of GP models. Feng et al. [27] further improved
he prediction accuracy by calibrating the variance with the conditional simulation method. While most existing robust optimization
ethods with GP models cannot effectively deal with the optimization problems for the functional response.

Recently, it has received extensive attention from researchers on simulation modeling and robust optimization for functional
esponse [28,29]. Conti and O’Hagan [30] developed the GP model using the separable covariance structure. They fixed some
lements in the covariance matrix, significantly saving computational costs. Subsequently, Chen and Müller [31] proposed an
dditive model based on GP regression to make the mean function have the additive property. While their method can only be
sed for single-response regression prediction. Hung, Joseph, and Melkote [32] pointed out that fitting a functional response with
GP model is extremely challenging due to the computational cost of high-dimensional outputs. They developed a functional GP
odel by the Kronecker product to simplify the model structure. Jiang, Tan, and Tsui [33] proposed a separable GP modeling method

ased on the Cartesian product covariance structure to save the computational cost further. In addition, some researchers have tried
sing the GP model to deal with robust optimization problems in the 3D printing process. Cheng, Wang, and Tsung [34] proposed
bias compensation method based on the GP model to improve the shape fidelity of the 3D printing process. Khatri et al. [35]

erified that the relationship between printing parameters and tensile strength is functional by using simulation analysis. While,
ost of the above studies cannot deal with the robust optimization with the functional multiresponse in 3D printing. Therefore, it

s meaningful to develop the robust optimization method of functional multiresponse in 3D printing process.
In order to solve the robust optimization problems of functional multiresponse to improve the product quality in 3D printing

rocess, a novel robust optimization model is proposed by integrating the Markov Chain Monte Carlo method and the additive GP
odeling technique. The proposed additive GP covariance function makes the temporal input 𝑡 as the additive form, which has the

advantages of a more flexible model structure to simulate the functional multiresponse. In addition, interval analysis of functional
multiresponse is adopted to qualify the model uncertainty, which improves the robustness and reliability of the optimal solution.

The remainder of the article is organized as follows. Section 2 provides the additive multiresponse GP modeling process and
parameter estimation process. The proposed robust optimization method is given in Section 3. Section 4 illustrates the advantages
of the proposed method through numerical simulation examples and the 3D printing case study. The work finishes with a discussion
in Section 5 that provides further context for the results.

2. Modeling process

2.1. Functional multiresponse GP

Consider the multivariate GP model with 𝑚 input variables are 𝐱 = [𝑥1,… , 𝑥𝑚]T, 𝑥𝑝 = [𝑎𝑝, 𝑡], 𝑎𝑝 = [𝑎𝑝,1,… , 𝑎𝑝,𝑑 ], 𝑝 = 1,… , 𝑚.
𝑇

2

𝑡 = 𝑡1,… , 𝑡𝑓 is a time factor that makes the output response functional. The 𝑛-dimension output response vector is 𝐲 = [𝐲1,… , 𝐲𝑛] ,
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𝐲𝑖 = [𝐲𝑖,1,… , 𝐲𝑖,𝑚], 𝑖 = 1,… , 𝑛, 𝐲𝑖,𝑚 = [𝑦𝑡1𝑖,𝑚,… , 𝑦
𝑡𝑓
𝑖,𝑚]. The output of the input 𝑥0 can be given by [33]

⎡

⎢

⎢

⎣

𝐲1(𝑥0)
⋮

𝐲𝑛(𝑥0)

⎤

⎥

⎥

⎦

∼ N
⎛

⎜

⎜

⎝

⎛

⎜

⎜

⎝

𝐮1(𝑥0)|𝐟1(𝑥0)
⋮

𝐮𝑛(𝑥0)|𝐟𝑛(𝑥0)

⎞

⎟

⎟

⎠

,
⎛

⎜

⎜

⎝

𝜉1
⋮
𝜉𝑛

⎞

⎟

⎟

⎠

⎞

⎟

⎟

⎠

𝐲𝑖(𝑎0) =
⎡

⎢

⎢

⎢

⎣

𝑦𝑡1𝑖,1(𝑎0) ⋯ 𝑦
𝑡𝑓
𝑖,1(𝑎0)

⋮ ⋱ ⋮

𝑦𝑡1𝑖,𝑚(𝑎0) ⋯ 𝑦
𝑡𝑓
𝑖,𝑚(𝑎0)

⎤

⎥

⎥

⎥

⎦

, 𝑖 = 1,… , 𝑛.

, (1)

where 𝐮𝑖(𝑥0) represents the 𝑖th predicted response mean, 𝐮𝑖(𝑥0) = [𝐮𝑖,1(𝑥0),… ,𝐮𝑖,𝑚(𝑥0)],𝐮𝑖,𝑝(𝑎0) = [𝐮𝑡1𝑖,𝑝(𝑎0),… ,𝐮𝑡𝑓𝑖,𝑝(𝑎0)], 𝑝 = 1,… , 𝑚.
𝐅 = [𝐟1,… , 𝐟𝑛]T is the prediction function, 𝐟𝑖 = [𝑓𝑖1,… , 𝑓𝑖𝑚], 𝑓𝑖𝑝 = [𝑓 𝑡1

𝑖𝑝 ,… , 𝑓
𝑡𝑓
𝑖𝑝 ]. 𝜉𝑖 = [𝜉𝑡1𝑖 ,… , 𝜉

𝑡𝑓
𝑖 ] is the noise of the 𝑖th response.

Consider a Gaussian prior for 𝐟𝑖:

𝐟𝑖(𝑥0) ∼ N
(

𝐦𝑖(𝑥0),𝐊𝑖(𝑥0, 𝐱)
)

, (2)

where 𝐦𝑖(𝑥0) is the mean function or latent variable function, and it is always set as 0 . 𝐊𝑖(𝑥0, 𝐱) represents the covariance relationship
between the input 𝑥0 of the 𝑖th response and the observation 𝐱.

2.2. Additive modeling

If there is no time factor 𝑥𝑡 in the input variables, the modeling process can be as follows. The covariance relationship between
𝑥0 and 𝑥1 can be represented by the square exponential kernel function [36]:

𝑘(𝑥0, 𝑥1) = 𝜎𝑖
2 exp (−

𝑑
∑

𝑘=1
(𝑥0,𝑘 − 𝑥1,𝑘)2𝑙−2𝑘 ∕2), (3)

where 𝜎𝑖2 is the parameter to control the curve smoothness of 𝑖th response. 𝑙−2𝑘 is the parameter to determine the correlation of the
𝑘th input factor. The hyperparameters of the model are 𝜽 = {𝝈, 𝝃, 𝒍}, 𝝈= [𝜎1,… , 𝜎𝑛], 𝝃 = [𝜉1,… , 𝜉𝑛], 𝒍 = {𝑙1,… , 𝑙𝑑}.

The correlation between the 𝑥0 of 𝑖th response and the 𝑥1 of the 𝑗th response can be represented by

𝐾(𝐱𝑖0, 𝐱
𝑗
1) = 𝜏𝑖,𝑗𝜎𝑖𝜎𝑗 exp (−

𝑑
∑

𝑘=1
(𝑥0,𝑘 − 𝑥1,𝑘)2𝑙−2𝑘 ∕2), (4)

where 𝜏𝑖,𝑗 = 𝜏𝑖,𝑗 , 𝑖, 𝑗 = 1,… , 𝑛 represent the correlation of responses 𝑖 and 𝑗. To ensure the validity of the covariance matrix
[𝐊]𝑖0,𝑗1 = 𝐾(𝐱𝑖0, 𝐱

𝑗
1) constructed by Eqs. (3) and (4), the 𝑛 × 𝑛 matrix [𝐓]𝑖𝑗 = 𝜏𝑖,𝑗 must be the positive definite matrix with unit

diagonal elements (PDUDE). The hypersphere decomposition method is used to construct the covariance matrix with the additional
parameters 𝝎, see Appendix A for details.

It should be noted that the above covariance matrices are mainly developed for continuous input factors, which cannot effectively
deal with the case of the functional response with discontinuous factors. Meanwhile, as shown in Eq. (4), 𝜏𝑖,𝑗 has been used to capture
the correlation of different responses. If another parameter is adopted to capture the correlation of time factors, the covariance
structure will be very complicated, and it will be very difficult to ensure the PDUDE of the covariance matrix. To this end, additive
modeling methods are adopted to construct the covariance matrix with the time factors. First, the covariance matrices are constructed
for different input factors (continuous input and time factor). And then, the covariance matrices are added together to form a new
covariance matrix, which can capture the correlation of different inputs and outputs. The detailed additive process is described as
follows.

The additive latent variable function of input 𝑥0 = [𝑥0,1,… , 𝑥0,𝑑 ] can be given by

𝐅(𝑥0) = 𝐟 (𝑎0) + 𝑓 (𝑡) = 𝑓1 +⋯ + 𝑓𝑑 + 𝑓𝑡, (5)

then, 𝑓𝑘 (𝑘 = 1,… , 𝑑.) can be represented by

𝑓𝑘 ∼ 𝑁(0,𝐊𝑘), (6)

where 𝐊𝑘 is given by

𝐊𝑘(𝑥𝑖0,𝑘, 𝑥
𝑗
1,𝑘) = 𝜏𝑖,𝑗𝜎𝑖𝜎𝑗 exp(−(𝑥0,𝑘 − 𝑥1,𝑘)2𝑙−2𝑘 ∕2), (7)

where 𝑥𝑖0,𝑘 represents the 𝑘th factor of 𝑥0 in the 𝑖th response. 𝑥𝑗1,𝑘 represents the 𝑘th factor of 𝑥1 in the 𝑗th response. The additive
covariance function can be represented as

𝜳 = 𝐊1 +⋯ +𝐊𝑑 +𝐊𝑡

=
𝑑
∑

𝑘=1
𝐊𝑘(𝑥0,𝑘, 𝐱𝑘) +

𝑡𝑓
∑

𝑔=1
𝐊𝑡(𝑡𝑔 , 𝐭)

= 𝜏𝑖,𝑗𝜎𝑖𝜎𝑗 [
𝑑
∑

exp(−(𝑥0,𝑘 − 𝐱𝑘)2𝑙−2𝑘 ∕2) +
𝑡𝑓
∑

exp(−(𝑡𝑔 − 𝐭)2𝑙−2𝑘 ∕2)]

. (8)
3

𝑘=1 𝑔=1
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w

Then, the conjugate prior at the input 𝑥0 can be expressed as

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝑓1
⋮
𝑓𝑡
𝐅
𝐲

⎤

⎥

⎥

⎥

⎥

⎥

⎦

∼ 𝑁

⎛

⎜

⎜

⎜

⎜

⎜

⎝

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0
⋮
⋮
0
0

⎤

⎥

⎥

⎥

⎥

⎥

⎦

,

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝐊1 𝐊1 𝐊1

⋱ ⋮ ⋮
𝐊𝑡 𝐊𝑡 𝐊𝑡

𝐊1 ⋯ 𝐊𝑡 𝜳 𝜳
𝐊1 ⋯ 𝐊𝑡 𝜳 𝜳 𝑦

⎤

⎥

⎥

⎥

⎥

⎥

⎦

⎞

⎟

⎟

⎟

⎟

⎟

⎠

, (9)

here 𝐅 ∼ 𝑁(0,𝜳 ). 𝜳 𝑦 = (𝜳 (𝑥0, 𝑥0)|𝜽 + 𝜉2𝐈). For the model parameters 𝜽 = {𝝈, 𝝃, 𝒍,𝝎},𝝈= [𝜎1,… , 𝜎𝑛], 𝝃 = [𝜉1,… , 𝜉𝑛], 𝒍 =
{𝑙1,… , 𝑙𝑑 , 𝑙𝑡1 ,… , 𝑙𝑡𝑓 }, the conditional distribution of 𝐟 (𝑥0) can be expressed as

𝐟 (𝑥0)|𝐅, 𝐱, 𝐲,𝜽 ∼ N(𝜳 𝐱,𝑥0𝜳
−1
𝐱,𝐱𝐅,𝜳 𝑥0 ,𝑥0 − 𝜳 𝑥0 ,𝐱𝜳

−1
𝐱,𝐱𝜳 𝐱,𝑥0 ). (10)

Then, the output of the additive Gaussian process model is given by

𝐮(𝑥0) = 𝜳 (𝑥0, 𝐱|𝜽)(𝜳−1(𝐱, 𝐱|𝜽) + 𝝃2𝐈)−1𝐲
𝐬(𝑥0) = 𝜳 (𝑥0, 𝑥0|𝜽) − 𝜳 (𝑥0, 𝐱|𝜽)(𝜳−1(𝐱, 𝐱|𝜽) + 𝝃2𝐈)−1𝜳 (𝐱, 𝑥0|𝜽)

, (11)

where 𝜳 (𝑥0, 𝐱|𝜽) = 𝐾(𝑥0, 𝐱1|𝜽),… , 𝐾(𝑥0, 𝐱𝑛|𝜽), 𝐱𝑛 is the observation vector of the 𝑛th response.

2.3. Parameter estimation

After determining the model structure mentioned in Section 2.2, the hyperparameters need to be estimated to obtain the model
output. The marginal likelihood function is 𝑝(𝐲|𝐱,𝜽), and the hyperparameters are 𝜽 = {𝝈, 𝝃, 𝒍,𝝎}. The Markov Chain Monte Carlo
sampling method introduced by Gelman et al. [37] is adopted to estimate the hyperparameters. The samples are obtained by 𝑝(𝜽|𝐱, 𝐲),
and the joint posterior distribution of the model hyperparameters is given by

𝜋(𝝈, 𝝃, 𝒍,𝝎|𝐱, 𝐲) ∝

𝜋(𝝈)𝜋(𝝎)𝜋(𝝃)𝜋(𝒍)||
|

𝜳 𝐱,𝐱 + 𝝃2𝐈||
|

− 1
2 exp

{

− 1
2 (𝐲 − 𝐟 (𝐱))′(𝜳 𝐱,𝐱 + 𝝃2𝐈)−1(𝐲 − 𝐟 (𝐱))

}

.
(12)

The priors of the hyperparameters are as follows [37]:

𝜋(log(𝜎2𝑘)) ∝ 1, 𝑘 = 1,… , 𝑚. (13)

𝜋(𝑙ℎ) ∝
𝛤 ((𝜈𝑡+1)∕2)

𝛤 (𝜈𝑡∕2)
√

𝜈𝑡𝜋𝜎2𝑡

(

1 + (𝑙ℎ−𝜇𝑡)2

𝜈𝑡𝜎2𝑡

)−(𝜈𝑡+1)∕2
, 𝜇𝑡 = 0, 𝜈𝑡 = 4, 𝜎2𝑡 = 1, ℎ = 1,… , 𝑑, 𝑡1,… , 𝑡𝑓 . (14)

𝜋(log(𝜉2𝑘)) ∝ 1, 𝑘 = 1,… , 𝑚. (15)

𝜋(log(𝜔𝑒)) ∝ 1, 𝑒 = 1,… , 𝑚(𝑚 − 1)∕2. (16)

The sampling process of parameter estimation can be seen in Appendix B for details. By repeating a large number of the sampling
process, the means of unknown parameters can be used to determine the additive multiresponse GP model. Then, the prediction
mean and variance in Eq. (11) can be obtained. Then, the predicted output can be used to construct the robust optimization model
for the functional response.

3. Robust optimization model

3.1. Quality loss

Taguchi defined quality loss as ‘‘The deviation between the quality characteristics and the specified target will lead to quality
loss. the greater the deviation value, the greater the loss’’. He proposed the expected quality loss function to measure product quality
further. To deal with the multiresponse robust optimization problems, Ko, Kim, and Jun [38] proposed the multivariate quality loss
function:

𝑄𝐿(𝐱0) = (𝐮(𝐱0) − 𝐓)T𝐂(𝐮(𝐱0) − 𝐓) + 𝑡𝑟𝑎𝑐𝑒[𝐂𝛴𝐮(𝐱0)], (17)

where 𝐮(𝐱0) is the predicted response mean vector. 𝐓 is the target of the output response. 𝛴𝐮(𝐱0) is the variance–covariance matrix
at input 𝐱0. 𝐂 is the cost matrix. There are some useful methods to obtain the cost matrix 𝐂, such as the methods introduced by
Pignatiello [39]. Calculating the elements in the cost matrix is not the main work here. Then, without loss of generality, the cost
matrix is given by

𝐂 =

⎡

⎢

⎢

⎢

⎢

⎣

0.5 0.05 ⋯ 0.05
0.05 ⋱ ⋱ ⋮
⋮ ⋱ ⋱ 0.05

0.05 ⋯ 0.05 0.5

⎤

⎥

⎥

⎥

⎥

⎦𝑛×𝑛

, (18)
4

where 𝑛 is the number of the output responses.
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Fig. 1. The sampling results of the model parameter 𝜃. 𝜃𝑥𝑖 and 𝜃𝑡𝑖 represent the parameter of the 𝑖th response.

3.2. Robust optimization

As mentioned in Section 3.1, the commonly used quality loss (QL) functions are mainly proposed for single-response or
multiresponse optimization problems. While, there is no way to deal directly with the robust parameter design for functional
responses. The quality characteristic requirement of the functional response is usually a functional boundary. For example, the
stress of the 3D printing product is a functional curve with the printing speed, corresponding to the target of the stress is also a
functional curve. To this end, this paper proposes an optimization model by integrating the quality loss function and the nonlinear
constraint to perform the robust optimization of functional responses:

𝑄𝐿(𝐱0) =
∑𝑛

𝑘=1 [(𝐮𝑘(𝐱0) − 𝐓𝑘)
T𝐂𝑘(𝐮𝑘(𝐱0) − 𝐓𝑘) + 𝑡𝑟𝑎𝑐𝑒(𝐂𝑘𝛴𝑘

𝐮𝑘(𝐱0)
)],

𝑠.𝑡. 𝐶𝐼𝑘(𝐱0) ∈ 𝑆𝑘,
(19)

where 𝐮𝑘(𝐱0) is the predicted response of the 𝑘th response at input 𝐱0. 𝐓𝑘 is the 𝑘th target of the response. 𝑆𝑘 is the specified
target interval of the 𝑘th response. 𝐶𝐼𝑘 is the confidence interval of the 𝑘th response, and can be obtained by the interval analysis
technique, see Appendix C for details. Cost matrix 𝐂𝑘 is set as same as in Section 3.1. The Bayesian optimization technique introduced
by Martinez-Cantin [40] has the advantage of sequential optimization, which is more accurate for GP models. Therefore, the Bayesian
optimization algorithm in Matlab is adopted to minimize Eq. (19) to obtain the optimal solution. Besides, the optimization model
with the confidence interval can effectively quantify the response uncertainty and improve the robustness and reliability of the
optimal solution.

3.3. Steps of the modeling process

The modeling process of the proposed robust optimization model based on the additive MGP model can be summarized as follows.
Step 1 Determine the experiment and collect the data.
Step 2 Construct the additive covariance matrix to capture the correlation of input variables.
Step 3 Use the hypersphere decomposition method to capture the correlation between functional multiresponse.
Step 4 Adopt the Markov Chain Monte Carlo sampling technique to estimate the model parameters and determine the model

structure.
Step 5 Construct the optimization model by integrating the quality loss function and nonlinear interval constraint.
Step 6 Minimize the objective function Eq. (19) by using the Bayesian optimization algorithm to obtain the optimal solution.

4. Case study

In this section, a numerical simulation example is used to illustrate the effectiveness of the proposed method. Then, the proposed
method is applied to the 3D printing process to improve the robustness and reliability of the product.

4.1. Numerical simulation example

In this example, the Bohachevsky function is adopted to illustrate the capability of the proposed method for 3𝑑 input. There are
three input variables 𝑥1, 𝑥2, and 𝑥3. There is also an input 𝑡 to make the responses functional. The responses are 𝑦1, 𝑦2, and 𝑦3. The
test function is given by [41]

⎧

⎪

⎨

⎪

⎩

𝑦1 = 𝑡(𝑥21 + 2𝑥22 − 0.3 cos(𝜋∕2 + 𝜋𝑥1∕3) − 0.4 cos(𝜋∕2 + 𝜋𝑥2∕4) + 0.7𝑥3) + 𝑡2

𝑦2 = 𝑡(𝑥21 + 2𝑥22 − 0.3 sin(𝜋𝑥1∕3) sin(𝜋𝑥2∕4) + 0.3𝑥3) + 𝑡2

𝑦3 = 𝑡(𝑥21 + 2𝑥22 − 0.3 cos(𝜋∕2 + 𝜋𝑥1∕3 + 𝜋𝑥2∕4) + 0.5𝑥3) + 𝑡2
(20)

where 𝑥𝑖 ∈ [−1, 1], 𝑖 = 1,… , 3. 𝑡 = 1, 2, 3, 4, 5. The 30 training points are obtained by the Latin square design, which is commonly used
5

in computer experiment and machine learning. The experiment data can be seen in Appendix D. After that, the additive multiresponse
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Fig. 2. The predicted and true values of the three responses.

GP model introduced in Section 2 is used to fit the functional response surface with the experiment data. The Markov Chain Monte
Carlo sampling technique is used to estimate the hyperparameters. The number of iterations for estimating the unknown parameter is
2000, the first 200 of which are taken as burn-in. The traceplot, probability density, and autocorrelation for convergence diagnosis
of model parameters (e.g., 𝜃) are given in Fig. 1. It can be seen in Fig. 1 that the Markov Chain Monte Carlo algorithm of the
proposed optimization process is convergence. Besides, the 20 test points are used to verify the model prediction accuracy, and the
predicted and true values of the test points are given in Fig. 2 to illustrate the prediction accuracy of the proposed model. It should
be pointed out that the time variable 𝑡 is taken as the 𝑥-axis, and each curve in Fig. 2 corresponds to the response of a test point
𝑥. Besides, It can be seen from Fig. 2 that the response curves are functional with time 𝑡, and the proposed method obtains the
predicted responses with high accuracy.

To further illustrate the advantages of the proposed method, the predicted results of the other three methods are given for
comparison. They are the GP model only has one response (OGP) [42], the multi-task GP model (MTGP) with sparse technique [43],
and the multiresponse GP (MRGP) model with dynamic hierarchical technique [44]. Meanwhile, the RMSE (Root Mean Square
Errors) and MAE (Mean Absolute Errors) are used to evaluate the prediction accuracy of different methods. RMSE and MAE can be
6
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Table 1
Comparison results of MAE and RMSE for different methods.

Method MAE RMSE

𝑦1 𝑦2 𝑦3 𝑦1 𝑦2 𝑦3
OGP 0.0773 0.0621 0.0670 0.1308 0.1020 0.1130
MTGP 0.0416 0.0402 0.0425 0.0866 0.0838 0.0893
MRGP 0.1044 0.1040 0.1040 0.1710 0.1711 0.1707
PM 0.0148 0.0109 0.0132 0.0304 0.0271 0.0286

Fig. 3. MAE and RMSE of different methods.

btained by

RMSE = 1
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√

√

√
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|
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(
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)
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|

. (22)

where 𝑚 is the number of the test points, 𝑚 = 20. RN is the number of the calculation process, RN = 20. �̄� is the predicted response.
𝑦 is the true response.

The MAEs and RMSEs of different methods are given in Table 1 and Fig. 3. The MRGP method fixes some parameters in the
covariance function before parameter estimation to save computing costs. Hence the prediction accuracy of MRGP is relatively poor,
and it obtains the worst predicted results with the largest RMSEs and MAEs for the responses. Moreover, because the correlation
between different output responses is not considered when constructing the covariance matrix, the prediction accuracy of OGP and
MTGP is also worse. Hence MAEs and RMSEs of the above method are larger than the proposed one. It can be seen in Fig. 3 that the
minimum of MAEs and RMSEs of MTGP are smaller than that of PM, but its mean values are greater than the PM, which means the
MTGP is not robust compared with the PM. Besides, OGP needs to construct 15 models to predict the three responses at 5 locations
(𝑡 = 1,… , 5), which greatly increases the difficulty and cost of the modeling process. The proposed method (PM) obtains a relatively
high prediction accuracy, and the MAEs of responses are 0.0157, 0.0119, and 0.0143; the RMSEs are 0.0595, 0.0558, and 0.0573.
Based on the above analysis, the proposed method has the highest prediction accuracy in this example, followed by the MTGP, OGP,
and MRGP methods. In particular, the proposed method not only accurately obtains the prediction results, but also provides a more
direct way to construct the response surface for the functional multiresponse. Furthermore, the Matérn kernel is also a flexible and
popular kernel function for building GP models. The comparison results of the Matérn kernel and square exponential kernel are
detailed in Appendix E.

4.2. 3D printing process

A real case study of the 3D printing process introduced by Waseem et al. [45] is used to illustrate the proposed method.
There are three input variables: Layer height 𝑥1 (mm), Infill 𝑥2 (%), and Patterns 𝑡, where 𝑡 = 1, 2, 3 represent the linear pattern,
exagonal pattern, and diamond pattern, respectively. The code levels of input variables are given in Table 2. The responses of the
7

rinting process are creep rate 𝑦1 (𝑙∕𝑠) and the rupture time 𝑦2 (ℎ). 𝑦1 is the smaller-the-better type characteristic, and 𝑦2 is the
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Table 2
Code levels of input variables.

Input parameter Symbols True value(Code level)

Layer Height 𝑥1 0.1(−1) 0.2(0) 0.3(1)
Infill 𝑥2 10(−1) 55(0) 100(1)
Patterns 𝑡 Linear(1) Hexagonal(2) Diamond(3)

Table 3
The experimental design and results.

No. Input 𝑦1 𝑦2
𝑥1 𝑥2 𝑡1 𝑡2 𝑡3 𝑡1 𝑡2 𝑡3

1 0.5994 −0.1294 0.1090 0.1005 0.1075 1.3137 2.1186 1.3068
2 −0.6399 −0.7824 0.1084 0.0844 0.1100 1.2845 2.0660 1.2968
3 0.9373 −0.4233 0.1083 0.1045 0.1065 1.3351 2.1026 1.3309
4 −0.1787 0.4271 0.1077 0.0886 0.1072 1.2874 2.1675 1.2775
5 0.2548 0.1229 0.1090 0.0958 0.1079 1.2991 2.1379 1.2906
6 −0.5483 0.7364 0.1053 0.0810 0.1053 1.2803 2.2002 1.2689
7 0.0245 −0.1040 0.1097 0.0937 0.1094 1.3088 2.1334 1.3052
8 −0.9297 −0.6545 0.1059 0.0781 0.1081 1.2737 2.0757 1.2863
9 0.4860 0.9143 0.1049 0.0939 0.1026 1.2260 2.1314 1.2049

Fig. 4. The true curves of the 9 training points.

larger-the-better type characteristic. The targets of 𝑦1 and 𝑦2 are 𝑇1 = [0, 0, 0] and 𝑇2 = [3, 3, 3], respectively. The upper of 𝑦1 is
𝑈 = [0.1055, 0.0950, 0.1075], and the lower of 𝑦2 is 𝐿 = [1.28, 2.13, 1.26]. The relationship between the inputs and outputs is given by

𝑦1 =

⎧

⎪

⎨

⎪

⎩

0.1094 + 0.001𝑥1 − 0.003𝑥2 − 0.004𝑥21 − 0.001𝑥22 − 0.001𝑥1𝑥2, t = 1.

0.093 + 0.014𝑥1 − 0.004𝑥2 − 0.004𝑥21 − 0.001𝑥22 − 0.001𝑥1𝑥2, t = 2.

0.109 − 0.001𝑥1 − 0.004𝑥2 − 0.004𝑥21 − 0.001𝑥22 − 0.001𝑥1𝑥2, t = 3.

(23)

𝑦2 =

⎧

⎪

⎨

⎪

⎩

1.305 + 0.005𝑥1 − 0.037𝑥2 − 0.008𝑥21 − 0.026𝑥22 − 0.054𝑥1𝑥2, t = 1.

2.14 − 0.025𝑥1 + 0.056𝑥2 − 0.008𝑥21 − 0.026𝑥22 − 0.054𝑥1𝑥2, t = 2.

1.30 − 0.002𝑥1 − 0.052𝑥2 − 0.007𝑥21 − 0.025𝑥22 − 0.054𝑥1𝑥2, t = 3.

(24)

here 𝑥𝑖 ∈ [−1, 1], 𝑖 = 1, 2. 𝑡 = 1, 2, 3. The Latin square design technique can obtain more information with fewer repetitions, and it
s used to generate 9 training points. The experimental design and results are shown in Table 3 and Fig. 4.

The purpose of robust parameter design in this case study is to find the optimal parameter settings in the feasible region to make
1 as small as possible and 𝑦2 as large as possible. The response surface model is constructed with the experimental data in Table 3
sing the process described in Section 2. Then, the robust optimization model can be given by

QL(𝑥) =
2
∑

𝑖=1
𝑘𝑖

[

(𝑦𝑖 − 𝑇𝑖)′𝐶(𝑦𝑖 − 𝑇𝑖) + 𝑡𝑟𝑎𝑐𝑒(𝐶𝑖𝑉𝑖)
]

(25)
8

𝑠.𝑡. CI(𝑦1) ≤ U, CI(𝑦2) ≥ L,
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Fig. 5. Iteration of the Bayesian optimization procedure.

Table 4
Optimization results of different methods.

Method Input 𝑦1 𝑦2 QL CD

𝑥1 𝑥2 𝑡1 𝑡2 𝑡3 𝑡1 𝑡2 𝑡3
OGP 1 −0.5440 0.1083 0.1054 0.1064 1.3438 2.0982 1.3413 3.1720 4.5368
MTGP −1 0.5004 0.1031 0.0732 0.1042 1.2940 2.2055 1.2897 3.2452 4.4914
MRGP −0.6127 0.2111 0.1067 0.0822 0.1074 1.2969 2.1700 1.2935 3.2648 4.5359
OQL 1 −0.9999 0.1094 0.1070 0.1080 1.3670 2.0790 1.3720 3.1105 4.5064
PM −0.9995 0.5467 0.1030 0.0731 0.1041 1.2935 2.2093 1.2886 3.2449 4.4887
Limitation – – 0.1055 0.0950 0.1075 1.28 2.13 1.26 – –

where 𝑘𝑖 is the coefficient of the cost for 𝑖th response, without loss of generality, let 𝑘1 = 𝑘2 = 0.5 here. 𝑦𝑖 represents the prediction
of the 𝑖th response. 𝑇𝑖 represents the target of the 𝑖th response. 𝑉𝑖 is the variance–covariance matrix of the 𝑖th response. 𝐶𝐼(𝑦𝑖) is
the confidence interval of the 𝑖th response. The Bayesian optimization algorithm in Matlab is used to minimize Eq. (25), the number
of the max objective evaluations is set as 100, and other tuning parameters remain the default. The optimization iterative process
is shown in Fig. 5. The results of OGP, MTGP, MRGP, and OQL methods are also given for comparison in Table 4.

Table 4 gives the optimal inputs, true responses, quality loss (QL), and the cumulative deviation (CD) between the true responses
and targets. The OQL method does not use interval analysis to consider the output response uncertainty. Hence the responses 𝑦1
and 𝑦2 of OQL (𝑦1 = [0.1094, 0.1070, 0.1080]) cannot meet the specific constraint (𝑈 = [0.1055, 0.0950, 0.1075]). Meanwhile, it can
be seen in Table 4 that responses of 𝑦1 at 𝑡1 and 𝑡2 (𝑦1 = [0.1083, 0.1054, 0.1064]) of OGP also cannot meet the specific constraint
because of its poor prediction performance. Similarly, due to the poor accuracy the response 𝑦1 of MRGP at 𝑡1 in Table 4 is also
larger than the specific constraint U. Therefore, although the same optimization method is used, the above methods cannot obtain
the optimal result within the specified interval due to the insufficient prediction accuracy of the regression model. Correspondingly,
the proposed method and MTGP method can obtain the optimal solution with the response within the specified (i.e., L and U)
constraints due to their high prediction accuracy for functional multiresponse.

On the other hand, compared with the OQL method, the PM obtains a larger quality loss (QL = 3.2449), while the CD (CD
= 4.4887) of PM is smaller, which means PM obtains the optimal solution closest to the targets. Besides, due to poor prediction
accuracy, the responses of OQL cannot meet the requirement of the specific constraint. Besides, compared with the MRGP method,
the PM obtains the more robust optimal solution with the smaller QL and CD. Moreover, The CD of OGP performs worst, which
means it obtains the optimal solution with the responses furthest from the targets. Therefore, due to the poor prediction accuracy,
the optimal solutions of other methods perform worse than the proposed one. Therefore the proposed method obtains a more robust
optimal solution than other ones.

The proposed method provides a new way to deal with the robust optimization and quality improvement of functional responses
in the 3D printing process. In fact, the proposed method with the additive covariance structure can accurately capture the correlation
between input variables and the correlation between functional multiresponse. In addition, the proposed method can effectively deal
with the robust optimization problems for the functional response, which is not directly for the commonly used GP models. The
proposed robust optimization model with interval analysis obtains the optimal solution that considers the requirements of the specific
constraint and improves the robustness of the optimization results.
9
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5. Conclusions

Most current simulation models and robust optimization methods cannot effectively deal with the functional multiresponse
ptimization problems in the 3D printing process. In this paper, a novel additive GP model is developed to perform the regression
rediction for functional multiresponse and robust optimization in the 3D printing process, which is the main contribution of this
aper. Besides, the modeling framework of combining the additive structure and the Markov Chain Monte Carlo technique provides a
ew way to simulate functional multiresponse relationships. In addition, the interval analysis technique of functional multiresponse
ignificantly improves the robustness and reliability of the optimization results.

The comparison results of the numerical example show that the proposed method can obtain the functional multiresponse
urface model with smaller MAE and RMSE than others. Besides, it can be seen from the case study that the proposed method
an effectively reduce quality loss and better meet the requirements of the specific target limits. Therefore, the proposed method
an help practitioners solve quality improvement problems with functional responses in 3D printing.

This paper develops an additive GP model to effectively deal with regression prediction and robust optimization for functional
esponses. The proposed method provides a more flexible and effective way to deal with robust optimization for functional
ultiresponse, which can be used to improve product quality in 3D printing. The proposed method ignores the effect of second-order

nd interaction terms in robust optimization. However, the second-order and interaction terms may also affect product quality in
D printing. Therefore, developing the variable selection method for the proposed additive GP model to identify important factors
an further improve prediction accuracy and save computing costs. Besides, this paper only considers two responses (creep rate and
upture time) to verify the effectiveness of the proposed simulation and robust optimization method. It is necessary to consider the
elationship between stress–strain in the quality design of the 3D printing process, which will be the focus of our future research.
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ppendix A. Hypersphere decomposition

The covariance matrix of the GP model must meet the PDUDE requirements. First, the matrix 𝐓 must be performed the Cholesky
decomposition:

𝐓 = 𝐋𝐋T, (A.1)

where 𝐋 = {𝑙𝑟,𝑠}, 1 ≤ 𝑠 < 𝑟 ≤ 𝑛 is a 𝑛 × 𝑛 lower triangular matrix. Then, each row vector (𝑙𝑟,1,… , 𝑙𝑟,𝑠) in 𝐋 can be represents as the
point coordinate on the unit sphere:

𝑙𝑟,𝑠 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1, 𝑟 = 𝑠 = 1
cos𝜔𝑟,𝑠, 𝑠 = 1

cos𝜔𝑟,𝑠𝛱𝑠−1
𝑡=1 sin𝜔𝑟,𝑡, 𝑠 = 2,… , 𝑟 − 1

𝛱𝑟−1
𝑡=1 sin𝜔𝑟,𝑡, 1 < 𝑟 = 𝑠 ≤ 𝑛

, (A.2)

where 𝜔𝑟,𝑠 ∈ (0, 𝜋). Let 𝝎 = {𝜔𝑟,𝑠}𝑟>𝑠 is a 𝑚×𝑚 lower triangular matrix, and only specify the elements except for the diagonal in the
lower triangular matrix 𝐋. The feasible range of 𝝎 is (0, 𝜋)𝑚(𝑚−1)∕2. By Eqs. (A.2)–(A.1), the matrix 𝐓 can be given by

𝐓 = 𝐋𝐋T =

⎡

⎢

⎢

⎢

⎢

⎣

1 𝑙1,2 ⋯ 𝑙1,𝑚
𝑙2,1 𝑙22,1 + 𝑙22,2 ⋯ 𝑙2,𝑚
⋮ ⋮ ⋱ ⋮
𝑙𝑚,1 𝑙𝑚,2 ⋯ 𝑙2𝑚,1 +⋯ + 𝑙2𝑚,𝑚

⎤

⎥

⎥

⎥

⎥

⎦

. (A.3)

Then, the correlation between the output responses 𝑝 and 𝑞 can be obtained by 𝜏𝑝,𝑞 = [𝐓]𝑝𝑞 , 𝑝, 𝑞 = [1,… , 𝑛]. Meanwhile, it can be
seen from Eq. (A.3) 𝐓 is a 𝑚×𝑚 PDUDE matrix. It should be pointed out that constructing the covariance matrix by the hypersphere
10

decomposition method needs the addition hyperparameters 𝝎 = [𝜔1,… , 𝜔𝑚(𝑚−1)∕2].
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Appendix B. Parameter estimation

The steps of the parameter estimation process for the proposed additive GP model can be summarized as follows. The joint
osterior distribution for the parameters is

𝜋(𝝈, 𝝃, 𝒍,𝝎|𝐱, 𝐲) ∝

𝜋(𝝈)𝜋(𝝎)𝜋(𝝃)𝜋(𝒍)||
|

𝜳 𝐱,𝐱 + 𝝃2𝐈||
|

− 1
2 exp

{

− 1
2 (𝐲 − 𝐟 (𝐱))′(𝜳 𝐱,𝐱 + 𝝃2𝐈)−1(𝐲 − 𝐟 (𝐱))

}

.
(B.1)

here the noninformative priors for model parameters can be seen in Section 2.3.
Let {𝜎𝑗𝑘, 𝑙

𝑗
ℎ, 𝜉

𝑗
𝑘, 𝜔

𝑗
𝑒} be the 𝑗th sample from the posterior distribution. To obtain the 𝑗 + 1 sample, we follow the following steps:

Steps 1: Update the parameter 𝝈 by drawing a new value form its conditional distribution: 𝑝(𝜎𝑘|𝐟 , 𝝃, 𝒍,𝝎, 𝐱, 𝐲) ∝ 𝑈 (0,+∞).
Steps 2: Update the parameter 𝒍 by drawing a new value form its conditional distribution: 𝑝(𝑙ℎ|𝐟 ,𝝈, 𝝃,𝝎, 𝐱, 𝐲) ∝ 𝑡4(0, 1).
Steps 3: Update the parameter 𝝃 by drawing a new value form its conditional distribution: 𝑝(𝜉𝑘|𝐟 ,𝝈, 𝒍,𝝎, 𝐱, 𝐲) ∝ 𝑈 (0,+∞).
Steps 4: Update the parameter 𝝎 by drawing a new value form its conditional distribution: 𝑝(𝜔𝑘|𝐟 ,𝝈, 𝒍, 𝝃, 𝐱, 𝐲) ∝ 𝑈 (0,+∞).
Steps 5: Update the parameter 𝐟 by drawing a new value form its conditional distribution: 𝑝(𝐟 |𝝈, 𝒍, 𝝃,𝝎, 𝐱, 𝐲) ∝

𝑁

⎛

⎜

⎜

⎜

⎝

𝛴𝑚
𝑖=1

𝐲(𝐱𝑖)
𝜉2𝑖

𝛴𝑚
𝑖=1

1
𝜉2𝑖

, 1
𝛴𝑚
𝑖=1

1
𝜉2𝑖

⎞

⎟

⎟

⎟

⎠

.

The model hyperparameters are obtained by repeating Steps (1–5) for a large number of iterations.

ppendix C. Interval analysis

In engineering practice, the output response is usually limited to a specified interval to meet the quality characteristics. Mean-
hile, the interval analysis technique effectively limits the output response to a specified interval for multiresponse optimization
roblems. When the confidence level (CL) of the confidence region is at least (1 − 𝛼) × 100%, the confidence region can be given by
onferroni’s inequality:

𝑃𝑟{(𝑦1, 𝑦2,… , 𝑦𝑑 ) ∈ 𝐶𝑅}
= 𝑃𝑟{𝑦1 ∈ 𝐶𝐼1, 𝑦2 ∈ 𝐶𝐼2,… , 𝑦𝑑 ∈ 𝐶𝐼𝑑}
≥ 1 − [Pr{𝑦1 ∈ 𝐶𝐼1} + Pr{𝑦2 ∈ 𝐶𝐼2} +⋯ + Pr{𝑦𝑑 ∈ 𝐶𝐼𝑑}]
= 1 − 𝛼∕𝑑 × 𝑑

(C.1)

here 𝑦 is the predicted response. 𝑑 is the number of responses. 𝐶𝐼𝑖 is the confidence interval of the 𝑖th response.
The posterior distribution of the 𝑖th output response for GP model can be given by

𝑦𝑖(𝐱0) ∼ 𝑁(𝑢𝑖(𝐱0), 𝑣𝑖(𝐱0)), (C.2)

where 𝑢𝑖(𝐱0) is the 𝑖th predicted response. 𝑣𝑖 is the 𝑖th predicted variance. The confidence interval of the 𝑖th response can be given
by

Pr{𝑦𝑖(𝐱0) ∈ 𝐶𝐼𝑖} = Pr{𝑦𝑖 ∈ (𝑦𝑖𝐿, 𝑦𝑖𝑈 )} = 1 − 𝛼. (C.3)

By Eq. (C.2), the confidence interval of response 𝑦𝑖 is given by

Pr{𝑦𝑖 ∈ 𝑢𝑖(𝐱0) ± 𝑧𝛼∕2
√

𝑣𝑖(𝐱0)} = 1 − 𝛼. (C.4)

For the 𝑑 output responses, the CL of each response must be as least (1 − 𝛼∕𝑑) × 100% to make the CL of the confidence region
is (1 − 𝛼) × 100%. The confidence interval of the response 𝑦𝑖 is given by

𝐶𝐼𝑦𝑖 = [𝑢𝑖(𝐱0) − 𝑧𝛼∕2𝑑
√

𝑣𝑖(𝐱0), 𝑢𝑖(𝐱0) + 𝑧𝛼∕2𝑑
√

𝑣𝑖(𝐱0)], (C.5)

where 𝑧𝛼∕2𝑑 is the 𝛼∕2𝑑 quantile of the standard normal distribution. Then, Eq. (C.5) can be used to constrain the bounds of the
functional response, which will further improve the robustness and reliability of the optimal solution.

Appendix D. Experimental data

See Table D.1.

Appendix E. Results for the Matérn kernel

The Matérn kernel is widely used to construct the GP model [36]. The covariance function with the Matérn kernel can be given
by

𝑘𝑣(𝑥𝑖, 𝑥𝑗 ) = 𝜎2 2
1−𝑣 (√

2𝑣𝑟
)𝑣

𝐾𝑣

(
√

2𝑣𝑟
)

, (E.1)
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Table D.1
Experimental design and data.

No. Input 𝑦1 𝑦2 𝑦3
𝑥1 𝑥2 𝑥3 𝑥13 𝑥23 𝑥33 𝑥43 𝑥53 𝑥13 𝑥23 𝑥33 𝑥43 𝑥53 𝑥13 𝑥23 𝑥33 𝑥43 𝑥53

1 0.80 0.83 −0.68 3.01 8.02 15.03 24.03 35.04 2.68 7.36 14.04 22.73 33.41 2.98 7.96 14.94 23.92 34.89
2 0.10 −0.78 −0.97 1.35 4.69 10.04 17.38 26.73 1.95 5.90 11.84 19.79 29.74 1.59 5.18 10.77 18.37 27.96
3 0.88 0.59 0.71 3.38 8.77 16.15 25.53 36.91 2.58 7.15 13.73 22.30 32.88 3.12 8.24 15.36 24.47 35.59
4 0.94 0.09 0.88 2.80 7.61 14.41 23.21 34.02 2.15 6.31 12.46 20.61 30.77 2.61 7.22 13.83 22.44 33.05
5 −0.98 0.67 0.76 3.35 8.71 16.06 25.42 36.77 3.23 8.47 15.70 24.93 36.17 3.11 8.23 15.34 24.45 35.56
6 −0.28 −0.95 −0.27 2.33 6.66 12.99 21.32 31.64 2.74 7.47 14.21 22.94 33.68 2.48 6.96 13.45 21.93 32.41
7 −0.65 0.29 0.30 1.71 5.42 11.12 18.83 28.54 1.73 5.45 11.18 18.91 28.64 1.61 5.23 10.84 18.46 28.07
8 0.65 −0.65 −0.90 1.64 5.28 10.92 18.56 28.20 2.10 6.20 12.29 20.39 30.49 1.88 5.75 11.63 19.51 29.39
9 0.82 −0.37 0.08 2.11 6.23 12.34 20.45 30.56 2.03 6.07 12.10 20.14 30.17 2.15 6.29 12.44 20.58 30.73
10 −0.87 0.14 −0.43 1.30 4.60 9.90 17.20 26.51 1.69 5.39 11.08 18.78 28.47 1.37 4.73 10.10 17.46 26.83
11 0.49 −0.26 −0.36 1.19 4.38 9.57 16.76 25.95 1.30 4.59 9.89 17.18 26.48 1.29 4.57 9.86 17.14 26.43
12 −0.25 −0.47 0.85 1.88 5.75 11.63 19.50 29.38 1.73 5.46 11.20 18.93 28.66 1.75 5.50 11.26 19.01 28.76
13 −0.45 −0.67 −0.51 1.41 4.81 10.22 17.63 27.04 1.88 5.76 11.64 19.51 29.39 1.59 5.19 10.78 18.37 27.97
14 −0.83 0.64 −0.24 2.29 6.58 12.87 21.16 31.46 2.53 7.07 13.60 22.13 32.67 2.27 6.54 12.81 21.08 31.34
15 0.56 0.00 −0.13 1.39 4.79 10.18 17.58 26.97 1.28 4.56 9.84 17.11 26.39 1.42 4.84 10.26 17.68 27.10
16 0.02 −0.85 0.20 2.35 6.70 13.05 21.40 31.75 2.51 7.03 13.54 22.06 32.57 2.37 6.74 13.11 21.48 31.85
17 0.32 −0.44 0.53 1.83 5.65 11.48 19.31 29.14 1.69 5.38 11.06 18.75 28.44 1.76 5.51 11.27 19.02 28.78
18 0.71 0.45 0.66 2.72 7.43 14.15 22.86 33.58 2.04 6.08 12.12 20.16 30.20 2.51 7.02 13.53 22.04 32.54
19 0.44 −0.93 0.59 3.20 8.41 15.61 24.82 36.02 3.19 8.39 15.58 24.77 35.97 3.14 8.28 15.42 24.56 35.70
20 0.39 −0.33 −0.86 0.79 3.58 8.37 15.16 23.95 1.15 4.29 9.44 16.59 25.73 0.99 3.98 8.97 15.96 24.95
21 −0.11 −0.19 0.02 1.00 4.00 9.00 16.01 25.01 1.08 4.17 9.25 16.34 25.42 1.01 4.03 9.04 16.05 25.07
22 −0.35 −0.09 −0.58 0.60 3.20 7.80 14.39 22.99 0.96 3.92 8.87 15.83 24.79 0.72 3.45 8.17 14.89 23.61
23 0.18 −0.02 −0.75 0.56 3.12 7.67 14.23 22.79 0.81 3.62 8.43 15.23 24.04 0.71 3.42 8.13 14.84 23.55
24 −0.17 0.91 −0.06 2.85 7.71 14.56 23.41 34.27 2.70 7.41 14.11 22.82 33.52 2.81 7.62 14.43 23.24 34.05
25 0.24 −0.57 0.18 1.73 5.47 11.20 18.94 28.67 1.79 5.59 11.38 19.17 28.96 1.74 5.48 11.21 18.95 28.69
26 −0.53 0.97 −0.13 3.19 8.38 15.57 24.76 35.95 3.23 8.46 15.69 24.92 36.16 3.16 8.32 15.48 24.64 35.80
27 −0.80 0.35 0.98 2.45 6.91 13.36 21.82 32.27 2.24 6.48 12.71 20.95 31.19 2.21 6.43 12.64 20.85 31.07
28 −0.03 0.25 0.43 1.50 4.99 10.49 17.99 27.48 1.26 4.51 9.77 17.03 26.29 1.39 4.78 10.17 17.56 26.95
29 −0.68 0.75 −0.61 2.17 6.34 12.51 20.69 30.86 2.50 7.00 13.50 22.01 32.51 2.23 6.46 12.69 20.93 31.16
30 −0.54 0.51 0.38 2.08 6.16 12.23 20.31 30.39 1.99 5.98 11.97 19.97 29.96 1.96 5.91 11.87 19.83 29.78

Table E.1
Comparison results of the square exponential kernel and Matérn kernel.

Method MAE RMSE

𝑦1 𝑦2 𝑦3 𝑦1 𝑦2 𝑦3
SEK 0.0148 0.0109 0.0132 0.0304 0.0271 0.0286
MK 0.0125 0.0173 0.0324 0.0194 0.0249 0.0496

where 𝑟 =
(

∑𝑑
𝑘=1

(𝑥𝑖,𝑘−𝑥𝑗,𝑘)2

𝑙2𝑘

)1∕2
. The parameter 𝑣 governs the smoothness of the process, and 𝐾𝜈 is a modified Bessel function.

The Matérn covariance functions can be represented more simpler when 𝑣 is a half-integer. The Matérn covariance functions with
𝑣 = 3∕2 and 𝑣 = 5∕2 are:

𝑘𝑣=3∕2(𝑥𝑖, 𝑥𝑗 ) = 𝜎2
(

1 +
√

3𝑟
)

exp
(

−
√

3𝑟
)

, (E.2)

𝑘𝑣=5∕2(𝑥𝑖, 𝑥𝑗 ) = 𝜎2
(

1 +
√

5𝑟 + 5𝑟2
3

)

exp
(

−
√

5𝑟
)

. (E.3)

To simplify, we give the results with 𝑣 = 3∕2 of example 1 in Section 4.1 to illustrate the effectiveness of the Matérn kernel. The
results are given in Table E.1.

It can be seen in Table 1 that the Matérn kernel (MK) does not have obvious advantages over the square exponential kernel (SEK).
From the perspective of MAE, 𝑦1 of MK is smaller than that of SEK. 𝑦2 and 𝑦3 of MK are larger than SEK. From the perspective of
RMSE, 𝑦1 and 𝑦2 of MK are smaller than that of SEK. 𝑦3 of MK is larger than that of SEK. Therefore, the square exponential kernel
is adopted to construct the GP model for robust parameter design in the paper.
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